
Chapter 10. Stochastic differential equations

Case I2(t): As I2 is a continuous local martingale with I2(0) = 0 it follows from the
martingale property and that Tm reduces I2 that E[I2(t ∧ Tm)] = 0.

Case I3(t): Using that ϕ′′n (x) = ψn(|x|) ≤ 2
nρ(|x|)−2 and the assumption |σ (x)−σ (y)| ≤

ρ(|x − y|) we get

E[|I3(t ∧ Tm)|] = 1
2 E

[∫ t∧Tm

0
ϕ′′n (∆s)(σ (X1

s )− σ (X2
s ))2 ds

]

≤ 1
2 E

[∫ t∧Tm

0
ψn(|∆s |)(ρ(|X1

s −X2
s |)2 ds

]

≤ 1
n E

[∫ t∧Tm

0
ρ(|∆s |)−2ρ(|∆s |)2 ds

]

≤ t
n .

Putting all the pieces together we see that

E[ϕn(∆t∧Tm )] = E[I1(t ∧ Tm)] +E[I2(t ∧ Tm)] +E[I3(t ∧ Tm)]

≤ E[|I1(t ∧ Tm)|] +E[|I3(t ∧ Tm)|]

≤ Km
∫ t

0
E[|∆s∧Tm |]ds+ t

n .

Setting g(t) = E[|∆t∧Tm |] we find using Fatou’s Lemma that

g(t) = E[|∆Tm∧t |] ≤ liminf
n→∞ E[ϕn(∆t∧Tm )]

≤ Km
∫ t

0
E[|∆s∧Tm |]ds = Km

∫ t

0
g(s)ds.

We have that g(t) is non-negative and finite since

g(t) = E[|∆Tm∧t |] = E[|X1
Tm∧t −X2

Tm∧t |] ≤ 2m <∞.
As g is also continuous and satisfies g(t) ≤ Km

∫ t
0 g(s)ds it follows from Grönwall’s

Inequality that g(t) = 0 for all t ≥ 0. This implies that ∆t∧Tm = 0 almost surely for
t ≥ 0, and by letting m go to infinity it follows that ∆t l 0, that is, X1

t l X
2
t . �

10.26 · Remarks.
(A) A function f :R→R is said to be Hölder continuous of order α ∈ (0,1] if there

exists a K ≥ 0 such that

|f (x)− f (y)| ≤ |x − y|α for all x,y ∈R.
(B) If α = 1 then f is Lipschitz continuous with Lipschitz constant 1.

(C) If σ is Hölder continuous of order α ≥ 1
2 then (i) in Theorem 10.25 is satisfied

with ρ(x) = xα , as
∫ ε

0
ρ(u)−2 du =

∫ ε

0
u−2α du =∞ for every ε > 0.

(D) The function x 7→ |x|α for α ≥ 1
2 is Hölder continuous of order α.

(E) We cannot put the same mild restriction on b. For example if α < 1 and σ = 0
and b(x) = |x|α ∧ 1 then it is Hölder continuous of order α as we see, using
Exercise 10.2, that

|b(x)− b(y)| ≤ ∣∣∣|x|α − |y|α ∣∣∣∧ 1 ≤ |x − y|α .
By Exercise 10.4 pathwise uniqueness does not hold for the SDE(§). ^

252



10.3 ·Weak Solutions

10.3 · Weak Solutions

Consider the space (C,B(C)), that is, the space of continuous functions f :R+→Rd

equipped with the Borel-algebra B(C). Let (Xt) be a continuous process, we show in
Exercise 9.4 that the mappingΦX :Ω→ C given byω 7→ X·(ω) is F -B(C)-measurable.
This means the distribution of the process (Xt), that is, PX = P◦Φ−1

X is a well-defined
measure on (C,B(C)). Note thatPX is decided by the values on the intersection stable
generating set A = {ξ−1

t1
(A1)∩ · · · ∩ ξ−1

tn
(An) |n ∈N,Ai ∈ B(Rd),0 ≤ t1 ≤ · · · ≤ tn} where

ξt : C → Rd is the projection ξt(ω) = ω(t). For n ∈N,Ai ∈ B(Rd),0 ≤ t1 < · · · < tn we
see that

PX(ξ−1
t1 (A1)∩ · · · ∩ ξ−1

tn (An)) = P((ξt1 ◦ΦX )−1(A1)∩ · · · ∩ (ξtn ◦ΦX )−1(An)) (10.13)

= P(Xt1 ∈ A1, . . . ,Xtn ∈ An) (10.14)

that is, PX is characterized by the finite-dimensional distributions of (Xt1 , . . . ,Xtn ) for
0 ≤ t1 < · · · < tn for n ∈N. In particular one sees that all standard Brownian motions
have the same distribution. One refers to this measure as the Wiener measure on the
path space. Note that (ξt) is a standard Brownian motion when (C,B(C)) is equipped
with the Wiener measure and the filtration Ft = σ (ξs | s ≤ t)*. Furthermore we ob-
serve that if two continuous processes are modifications then they have identical
distribution. We have the following definition.

10.27 · Definition. We say that there is uniqueness in distribution in the SDE(§) if
for all x ∈ Rd and all solutions to the SDE(§) (Xt ,Bt ,Ft) on (Ω,F ,P) and (X ′t ,B′t ,F ′t )
on (Ω′ ,F ′ ,P′) such that P(X0 = x) = P′(X ′0 = x) = 1 we have PX = P′X′ .

10.28 · Example. This is an example where we show that pathwise uniqueness does
not hold but uniqueness in distribution does. Let d =m = 1, b = 0 and σ = sign. We
have shown in Example 10.10 that pathwise uniqueness does not hold in this case.
Let x ∈ R and Xt = x +

∫ t
0 sign(Xs)dBs and set Yt = Xt − x =

∫ t
0 sign(Xs)dBs. Then (Yt)

is a continuous local martingale with Y0 = 0 and

〈Y 〉t l
∫ t

0
sign(Xs)

2 ds =
∫ t

0
1ds = t, (t ≥ 0)

implying that (Yt) is a Brownian motion by Lévy’s Theorem. If (X ′t ,B′t ,F ′t ) is another
solution, then defining Y ′t = X ′t − x we obtain

P′X′ = P′x+Y ′ = Px+Y = PX ,

as (Y ′t ) is a Brownian motion and the distribution of a Brownian motion is unique, cf.
Lemma A.27(i). ©

One might wonder about the relation between uniqueness in distribution and path-
wise uniqueness of the SDE(§), but uniqueness in distribution concerns solutions
defined on different probability spaces and as such it is not immediately clear that
pathwise uniqueness is actually the strongest, but this is proven in the next theorem
and its proof is based on regular conditional distribution and distributions of pro-
cesses on path spaces. The reader is therefore encouraged to consult Appendix A.4
and A.6.

* For more information look at Section A.4, specifically Lemma A.27.
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